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More and more attention is paid to investigations of the regularities of crack growth 
in metals under high-temperature creep conditions at this time. These are both experimental 
papers on the clarification of parameters governing the rate of crack growth in specimens 
(see [1-3], etc.), and theoretical papers examining the problem of crack growth under differ- 
ent initial assumptions about the stress distribution near the crack apex and the crack pro- 
pagation criteria (see [4-10], etc.). 

The process of stress redistribution from the initial elastic state to the steady creep 
state that occurs in a solid with a crack after the load application is not taken into ac- 
count in an absolute majority of theoretical papers. A solution of such a problem is repre- 
sented in [ll] for a power law of creep with hardening and softening of the material taken 
into account. A finite-element analysis of the stress field, performed in [12], verified the 
validity of the asymptotics obtained in [ii]o 

i. The fundamental relationships of [ii] for the plane strain case are these: a) at the 
initial instant (t = 0), the stress field has the form 

o~j (r ,  O, t - :  O) = Ks ''<~ V ~  <~j (0); ( l .  Z) 

b) for t > 0 a domain expanding with the lapse of time originates in direct proximity to the 
crack apex, and creep strains predominate therein, while the stress field there has the same 
form as in [13, 14]: 

I 

% (r, O, t) [ c(t) ' ~ ( ~ ,  0~; (1.2) 
= t - m ; ? j  / , 

while an elastic stress distribution (i.I) is conserved outside this domain. Here r, ~ are 

polar coordinates; ~(~(8),-- ~)t_ (n,e), known functions of the angular variation in the 

stress in the elastic state and in the state of steady creep; B, n, constants in the power 
law of creep ~(c) = Bon; in , a known constant [13], 

{ C,t~,It, 0 < t < t.r, 
C (t) = C, ,  t >~ t~; 

C, is the steady creep integral independent of the contour analogous to the J-integral of 
Cherepanov--Rice [2], t T = (I -- ~2) x K~/[(n + I)EC,] is the build-up time of the stationary 
state of steady creep near the crack apex. Domains of predominant creep strain and elastic 
strain are separated by a certain transition zone. Neglecting this zone, we find from the 
condition of continuity of the normal stress on the boundary separating the domain of predom- 
inant creep strain (the asymptotic (1.2)) and of elastic strain (the asymptotic (i.i)), the 
equation of the line separating these domains 
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::}?(n, where F(O) is an unknown function of the polar angle 0 defined by o ) (G) and O )  and 
such that F(0) = i. The legitimacy of such a stress field approximation (the localization 
of the transition zone at the line (1.3)) is confirmed by results in [15], 

2. The damage parameter ~(x, t) (0~. ~ ~I) with its kinetic equation [16] 

J(o A(.  am:'~ ~'~ (2 l) 
, t  t l  --- (o / 

was used in [7] to describe crack growth under creep. The dependence 

t 

] -~ (;1 --. o)(.r, l)) ~ ~'l =~ .,1 (m : 1).f Ch%ax (m., m) dm ( 2 . 2 )  
0 

is found for ~(x, t) from (2.1). Having selected the condition m(/(t), t) = i as the crack 
propagation criterion (the damage at the crack apex has its limit value ~ = I) we obtain an 
equation to find the law of crack growth during creep 

t 

1 --= .4  ( m  -4- I )  ,! .,%~_~ (~ (t), ~) d~ .  
0 

( 2 . 3 )  

For Omax= Oy in conformity with the results in [ii] we select the following approximation 

! 

o,,~.~ r ~) = I t ~  : - ~(~) ( 2 . 4 )  
: ~ ? ~ 7  K :  , x - - -  l (t') :>./- R ( t) ,  

',, ,... r - -  ~ (t)) 

where R(t) = r1(0, t). Substituting (2.4) into (2.3), we convert it to the form 

t f ~ d'~ f (' (,:)'-,W-4: d'r 

o t l  ( t )  ? ( ':)) '-:2/ : tz j  / - -  .... (Z (t) - ~ (m)) "+:  

(2.5) 

where m(t) is the solution of the equation l(~) + R(~) = /(t). Let us use the notation m/ 
(n + ]) = a, 0 < a < i, m/2 = B, 0 < B, /(t) -- lo = z and let us introduce the new variable 

= i(~) -- lo. Then (2.5) is written in the form 

z 

1 t "~" (~) d~ j_ ,I :BI n ] (z --- ~]~" ( 2 . 6 )  
" o " . ~,z) ' " 

Here ~(z) is the solution of the equation E + R(~) = z. 

To s e e k  t h e  s o l u t J - o n  o f  Eq.  ( 2 . 6 ) ,  t o  d e t e r m i n e  t h e  unknown  d e p e n d e n c e  " r ( ~ ) ,  we a p p l y  
the Laplace transform in the variable z. After a change in the order of integration in the 
r i g h t  s i d e ,  Eq.  ( 2 . 6 )  c a n  b e  r e d u c e d  t o  t h e  f o r m  

i .[[K~ ~f~ t _ f~e_Ptd t  - ~ - { C ( ~ . ) , ~ t _ a e _ p ~ d  t d~ .  ( 2 . 7 )  

Let us write the asymptotics for the integrals in-(2.7) corresponding to the case of large 
p: 

�9 t - ~ e - P t d t  =~ p i t  t pl~ : ~g p R !  ] ) '  ( 2 . 8 )  

R 
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Taking account of asymptotic (2.8), Eq. (2.7) has the form 

A (m § ~) p 
fc (~)'~<< f,, + t" 

0 

Let 

+ R(~)) has been made in the second integral). 

oo 

cFI(P) = e - r4 ,~ ' (~ )  ~ d~ 
0 

(2.9) 

and ~ 2 ( P ) ~  e-;Z~'(z)\-~n ) B(z~+a ( t h e  c h a n g e  o f  v a r i a b l e  z = 
0 

Then we can  w r i t e  f o r  ( 2 . 9 )  

A(m,+t)  p - -  pl---~ ~ - l b l ( P ) + ( ~  p----U-\ 

For large p the solution of (2.10) has the form 

' ((+)) 
% (P) .... r (t - -  o~) A (,, + l )  p'~ i -~- O . 

(2.10) 

(2.11) 

Going from the transform to the original in (2.11), we obtain 

,i; t 

(Z) ltBT~n ) =- F ( t  . -  cx) f ' ( c i )A(m- ! , -  t )  ( t  O (~)) ( 2 . 1 2 )  

For small z the rate of crack growth can be found from (2.12) 

[ dz , c' (z)'~ t ,J 
(2.13) 

For t < t T the relationship (2.13) takes the form 

. (t, -,,,:) ;,'7 " ":~ 
= __ . ,'r __ [07 ' i :4 (m -~- I )  F (~) F (1 ~.) (,~ 7/3)-)~,77~'t ) t '  "~ ~ ( 2 . 1 4 )  

Integrating (2.14) and getting rid of t, the relationship for the rate of crack growth ~ for 
t < t T can be written in the form 

1 2ci, 

=\i-cc) i- '!) l "  ('~) l '  ( l  - -  = )  t ,  i-~_!s,~zs~,s .i !")~ 

Therefore, in the nonstationary stage of the stress redistribution from the initial elastic 
state to the steady creep state the rate of crack growth is determined by the stress intens- 
ity factor K I. An experimental dependence of the rate of crack growth on K I was observed 
in a number of experiments [i, 3, 8-10]. 

For t > t T relationship (2.13) takes the form 

-- 10) , 

i.e., the rate of crack growth is already determined by the C,-integral. The experimental 
dependence l(C,) was observed in [2, 3, 8-10]. Such a transition in the parameters govern- 
ing the crack growth rate was also observed in a number of experiments when some authors 
obtained the dependence ~(KI) and others l(C,) in the very same material [3, 8-10]. This 
can apparently be related to the specimens on which the experiments were performed (the kind 
of specimen affects the quantity K I and C,, while they in turn affect the quantity tT) , or 
to the time interval in which the experiment was performed (the time of performing the experi- 
ment t is less than or greater than tT). 

The deduction can be made from the solution presented above for the crack growth, that 
the stress redistribution under creep can substantially affect the parameter governing the 
crack growth rate. 
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